Enhanced synaptic plasticity in mice with phosphomimetic mutation of the GluA1 AMPA receptor.
نویسندگان
چکیده
Phosphorylation of the GluA1 subunit of AMPA receptors has been proposed to regulate receptor trafficking and synaptic transmission and plasticity. However, it remains unclear whether GluA1 phosphorylation is permissive or sufficient for enacting these functional changes. Here we investigate the role of GluA1 phosphorylation at S831 and S845 residues in the hippocampus through the analyses of GluA1 S831D/S845D phosphomimetic knock-in mice. S831D/S845D mice showed normal total and surface expression and subcellular localization of GluA1 as well as intact basal synaptic transmission. In addition, theta-burst stimulation, a protocol that was sufficient to induce robust long-term potentiation (LTP) in WT mice, resulted in LTP of similar magnitude in S831D/S845D mice. However, S831D/S845D mice showed LTP induced with 10-Hz stimulation, a protocol that is weaker than theta-burst stimulation and was not sufficient to induce LTP in WT mice. Moreover, S831D/S845D mice exhibited LTP induced with spike-timing-dependent plasticity (STDP) protocol at a long pre-post interval that was subthreshold for WT mice, although a suprathreshold STDP protocol at a short pre-post interval resulted in similarly robust LTP for WT and S831D/S845D mice. These results indicate that phosphorylation of GluA1 at S831 and S845 is sufficient to lower the threshold for LTP induction, increasing the probability of synaptic plasticity.
منابع مشابه
Stress induces pain transition by potentiation of AMPA receptor phosphorylation.
Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA recep...
متن کاملAKAP150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca2+-permeable AMPA receptors.
AMPA receptors (AMPARs) are tetrameric ion channels assembled from GluA1-GluA4 subunits that mediate the majority of fast excitatory synaptic transmission in the brain. In the hippocampus, most synaptic AMPARs are composed of GluA1/2 or GluA2/3 with the GluA2 subunit preventing Ca(2+) influx. However, a small number of Ca(2+)-permeable GluA1 homomeric receptors reside in extrasynaptic locations...
متن کاملRegulation of GluA1 a-Amino-3-Hydroxy-5-Methyl-4- Isoxazolepropionic Acid Receptor Function by Protein Kinase C at Serine-818 and Threonine-840
Three residues within the AMPA (a-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid) receptor subunit GluA1C terminus (Ser818, Ser831, Thr840) can be phosphorylated by Ca/phospholipiddependent protein kinase (PKC). Here, we show that PKC phosphorylation of GluA1 Ser818 or Thr840 enhances the weighted mean channel conductance without altering the response time course or agonist potency. These da...
متن کاملP6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملSelective regulation of GluA subunit synthesis and AMPA receptor-mediated synaptic function and plasticity by the translation repressor 4E-BP2 in hippocampal pyramidal cells.
The eukaryotic initiation factor 4E-binding protein-2 (4E-BP2) is a repressor of cap-dependent mRNA translation and a major downstream effector of the mammalian target of rapamycin (mTOR) implicated in hippocampal long-term synaptic plasticity and memory. Yet, synaptic mechanisms regulated by 4E-BP2 translational repression remain unknown. Combining knock-out mice, whole-cell recordings, spine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 20 شماره
صفحات -
تاریخ انتشار 2011